

CP 130 / CP 130-LS Système Coulissant & à Levage

La porte coulissante grande dimension CP 130 en neuf comme en rénovation offre des performances élevées et convient pour un large éventail d'applications.

Le CP 130 combine en un seul design les systèmes coulissant, levant-coulissant, monorail, bi-rail et tri-rail.

Grâce à son isolation renforcée et la possibilité d'intégrer des vitrages jusqu'à 42 mm pour un poids maximal de 300kg, le CP 130 répond parfaitement à toutes les exigences des constructions respectueuses de l'environnement.

NOUS DONNONS VIE A L'ALUMINIUM

CARACTERISTIQUES TECHNIQUES										
Applications	CP 130 MONORAIL	CP 130 2-RAIL	CP 130 3-RAIL	CP 130-LS 2-RAIL	CP 130-LS 3-RAIL					
Surface visible										
Dormant	50 mm	50 mm	50 mm	28-35-40 mm	28-35-40 mm					
Ouvrant	94 mm	94 mm	94 mm	94 mm	94 mm					
Traverses	76 mm à 115 mm	76 mm à 115 mm	76 mm à 115 mm	76 mm à 115 mm	76 mm à 115 mm					
Chicane	69 - 98 mm	69 - 98 mm	69 - 98 mm	69 - 98 mm	69 - 98 mm					
Dimension maxi / vantail	H = 2.70 m x L = 2.60 m									
Base dormant	130 mm	130 mm	181 mm	139 mm	210 mm					
Ouvrant	59 mm	59 mm	59 mm	59 mm	59 mm					
Feuillure	25 mm	25 mm	25 mm	25 mm	25 mm					
Epaisseur de Vitrage	jusqu'à 42 mm	jusqu'à 42 mm	jusqu'à 42 mm	jusqu'à 42 mm	jusqu'à 42 mm					
Poids max/vantail	300 kg									
Isolant thermique	Barrettes polyamide de 23 mm et 32 mm renforcée de fibre de verre									

PERFORMANCES

Coefficient Uw 1.4 W/m²K

ENERGIE

Isolation thermique (1) Uw 1.5 W/m²K (châssis 2 vantaux 5.2m x 2.7m - Ug : 1.0) EN 10077-2

CONFORT

Perméabilité à l'air ⁽²⁾ EN 12207	1 (150 Pa)			2 (300 Pa)		3 (600 Pa)		4 (600 Pa)					
Etanchéité à l'eau ⁽³⁾ EN 12208	1A (0 Pa)	2A (50 Pa)	3A (100 Pa)		4A 50 Pa)	5A (200 Pa)	6A (250 Pa)	7A (300 Pa)	8 <i>A</i> (450	-	9A (600 Pa)	E900 (900 Pa)	
Résistance au vent, pression d'essai max. ⁽⁴⁾ EN 12211; EN 12210	1 (400 Pa)		2 (800 Pa	a)	3 (1200 Pa)		4 (1600 Pa)		5 (2000 Pa)			Exxx (> 2000 Pa)	
Résistance au vent, deflection du dormant ⁽⁴⁾ EN 12211; EN 12210	A (£1/150)			B (s1/200)				C (≤1/300)					

Ce tableau montre les classes et valeurs de performances possibles. Les valeurs indiquées en rouge correspondent au système.

- (1) La valeur Uw mesure le flux thermique. Plus la valeur Uw est basse, plus l'isolation thermique du dormant est efficace.
- (1) L'essai d'étanchéité à l'air mesure le volume d'air passant à travers une fenêtre fermée sous une pression donnée.
 (2) L'essai d'étanchéité à l'air mesure le volume d'air passant à travers une fenêtre fermée sous une pression donnée.
 (3) L'essai d'étanchéité à l'eau consiste à appliquer un jet d'eau uniforme à une pression d'air croissante jusqu'à ce que l'eau pénètre
 (4) La résistance à la charge de vent est une mesure de la robustesse structurelle du profilé et est testée en appliquant des niveaux de pression d'air croissants pour simuler la force du vent. Il existe jusqu'à cinq niveaux de résistance au vent (1 à 5) et trois classes de déflection (A, B, C). Plus la valeur est élevée, meilleure est la performance.